Characterization of squalene epoxidase of Saccharomyces cerevisiae by applying terbinafine-sensitive variants.
نویسندگان
چکیده
Squalene epoxidase (SE) is the target of terbinafine, which specifically inhibits the fungal enzyme in a noncompetitive manner. On the basis of functional homologies to p-hydroxybenzoate hydroxylase (PHBH) from Pseudomonas fluorescens, the Erg1 protein contains two flavin adenine dinucleotide (FAD) domains and one nucleotide binding (NB) site. By in vitro mutagenesis of the ERG1 gene, which codes for the Saccharomyces cerevisiae SE, we isolated erg1 alleles that conferred increased terbinafine sensitivity or that showed a lethal phenotype when they were expressed in erg1-knockout strain KLN1. All but one of the amino acid substitutions affected conserved FAD/nucleotide binding sites. The G(25)S, D(335)X (W, F, P), and G(210)A substitutions in the FADI, FADII, and NB sites, respectively, rendered the SE variants nonfunctional. The G(30)S and L(37)P variants exhibited decreased enzymatic activity, accompanied by a sevenfold increase in erg1 mRNA levels and an altered sterol composition, and rendered KLN1 more sensitive not only to allylamines (10 to 25 times) but also to other ergosterol biosynthesis inhibitors. The R(269)G variant exhibited moderately reduced SE activity and a 5- to 10-fold increase in allylamine sensitivity but no cross-sensitivity to the other ergosterol biosynthesis inhibitors. To further elucidate the roles of specific amino acids in SE function and inhibitor interaction, a homology model of Erg1p was built on the basis of the crystal structure of PHBH. All experimental data obtained with the sensitive Erg1 variants support this model. In addition, the amino acids responsible for terbinafine resistance, although they are distributed along the sequence of Erg1p, cluster on the surface of the Erg1p model, giving rise to a putative binding site for allylamines.
منابع مشابه
Molecular mechanism of terbinafine resistance in Saccharomyces cerevisiae.
Ten mutants of the yeast Saccharomyces cerevisiae resistant to the antimycotic terbinafine were isolated after chemical or UV mutagenesis. Molecular analysis of these mutants revealed single base pair exchanges in the ERG1 gene coding for squalene epoxidase, the target of terbinafine. The mutants did not show cross-resistance to any of the substrates of various pleiotropic drug resistance efflu...
متن کاملSingle amino acid exchanges in FAD-binding domains of squalene epoxidase of Saccharomyces cerevisiae lead to either loss of functionality or terbinafine sensitivity.
Squalene epoxidase (Erg1p) is an essential enzyme in the ergosterol biosynthesis pathway in yeast. For its enzymatic activity, Erg1p requires molecular oxygen, NAD(P)H and FAD. Amino acid analysis and sequence alignment with other squalene epoxidases revealed two highly conserved FAD-binding domains, FAD I and FAD II. By random PCR mutagenesis of the ERG1 gene, one erg1 allele was isolated that...
متن کاملBiochemical characterization of terbinafine-resistant Trichophyton rubrum isolates.
We investigated the biochemical basis for resistance in six sequential clinical isolates of Trichophyton rubrum, from the same patient, which exhibited high-level primary resistance to terbinafine. Cellular ergosterol biosynthesis was measured by incorporation of [14C]acetate, and microsomal squalene epoxidase was assayed by conversion of [3H]squalene to squalene epoxide and lanosterol. Direct ...
متن کاملAmino acid substitution in Trichophyton rubrum squalene epoxidase associated with resistance to terbinafine.
There has only been one clinically confirmed case of terbinafine resistance in dermatophytes, where six sequential Trichophyton rubrum isolates from the same patient were found to be resistant to terbinafine and cross-resistant to other squalene epoxidase (SE) inhibitors. Microsomal SE activity from these resistant isolates was insensitive to terbinafine, suggesting a target-based mechanism of ...
متن کاملOxygen requirements for formation and activity of the squalene epoxidase in Saccharomyces cerevisiae.
The effect of oxygen on squalene epoxidase activity in Saccharomyces cerevisiae was investigated. In cells grown in standing cultures, the epoxidase was localized mainly in the "mitochondrial" fraction. Upon aeration, enzyme activity increased and the newly formed enzyme was associated with the "microsomal" fraction. At 0.03% (vol/vol) oxygen, epoxidase levels doubled, whereas the ergosterol le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Antimicrobial agents and chemotherapy
دوره 51 1 شماره
صفحات -
تاریخ انتشار 2007